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Random Forests produce highly accurate predictions with little tuning but Recent work takes advantage of averaging nature of random forest predictions to Often interested in comparing a full model versus a nested model. Then, the
are poor at producing interpretable conclusions - "Black-boxes" establish central limit theorems for random forests build on subsamples of size difference in RF predictions at given test points 7 is a U-statistic. Mentch
Distributional results for random forest predictions have been developed in k < n. Let Di_. U D, be a data frame with the last ¢ rows from D, then define and Hooker (2016) showed that for ﬁB(x) = RFy(x; D) — RF3(x; D7),
works such as (Mentch and Hooker, 2016; Wager and Athey, 2018) and .= Cov(T(x;&, D : 4
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Mentch and Hooker (2016) showed that if M1: k = o(+/n) and M2: {; /5 0, then

Valid inference for variable importance (like the F-test for linear regression) where 3pis a |7 | X |7| covariance matrix.
has been developed too (Coleman et al., 2019) VB [RFy(x; D) — ERF(x; D)] d > N(0,1) and @ = lim n The Monte Carlo estimation errors associated with 3p are large enough to
\/k_zgl e n—e B affect power/Type | error of procedure, leads to requirements like B, = O(n)
by illuminating the connection between U-statistics and subsampled learners. : e
Random forests are ensembles of randomized decision trees trained on data Wager and Athey (2018) showed that if additional constraints (W1: honesty, W2: 5. Fiis ‘oo
D, T(-; ¢, D) which make predictions according to regularity) are placed on tree construction, then if k = o(n?) for g € (0.5, 1): EE f Signifcant? :
= (RF(x: D) — E(Y|X = x)] 4 gl ARRNARNARI|IWURN e ] e vt Permutation tests allow for
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RF(X; Z)) . EfT(X, g’ Z)) ~ 7 Z T(x; é.:k’ Z)) - RFB(X; Z)) N(O 1) MSE Test Power M;R/S I)\/Iodel teSt.Ing featqre lmportance W/O
B k=1 on(x) < X X — © Srucre variance estimation. Let
. : : : and they further provide consistent estimators for o,(x). 8 1 o Contruos — (r — v)?
Intuition: Bias(RF(x; D)) = Bias(T(x; ¢, D)) which tends to be small, but y 1 provi o ’:’( .) o _ Soml + o 8y(7) . .(r ¥)°. Then, thg WIS
, M1, W1 and W2 place many restrictions on tree building, and M2 is impossible to 20| Sigifcant? (conditional on both x, y) is
Var(RE(x; D)) = Cor(T(x: ¢, D), T(x: &7, D)Var(T(x; ¢, D)) < Var(T(x; £, D)), verify in practice, and additionally don’t inform rates of convergence S e 5 70 06 05 o 1570 S e Semman given by g, (RF(x)).
so that randomness ¢ decreases correlation, which stabilizes predictions SE Tost boner Conolated Logit Model If 3 sequence a, such that
Averaging of deep decision trees, thus hard to interpret predictions Sro—— - _— J
wwe ay [REp,(x) - BRE(x)] SN(0,1)
In Peng et al. (2019), M1 is relaxed and M2 is eliminated (without enforcing W1, 5322# I | RFg (x) 2 ERF(x)
k é‘/ 1 € 0 5 10 15 200 5 10 15 200 5 10 15 20 "
o | | W2), so that so long as P1: kT 0 and k = o(n), then MSETeStPOWZr, . then delta method applies and
Correlation in random forest average makes analysis challenging VB [RFy(x: D) — ERF(x: D c [ o e | eieny
Typical measures of variable importance are neither statistically valid nor B D) - (D] 4 > N(0,1) Fors Signifcant Qn [gy(RFBn(x)) - Egy(RFBn(x)]
i isti i Ky o, 1 R Ecuaal ; 3 S d
reliable heurlstlc.s (Strobl et al., 2007), but a.re widely used | 0+ 30k fo| - Emammas NEmEm==s B=mmsme < N(o, (g;(ERF(x))Z)
Often overstate influence of correlated variables and understate influence ¢ ST 7§ E 51 354 734 5123 43 .
of categorical variables For a bagged p nearest-neighbor estimator, can be shown that él < c(p) < 2 for Figure: Power for MSE Test procedure from Can show that permutation
. o1 [ () (k N Coleman et al. (2019). Top: Linear model Second: distribution of MSE statistic also
C(p) = limg o0 2p/ Z Z (2 Nonlinear regression model Third: High dimensional approaches the same
g correlated signal Bottom: Data model is exactly a rrearditamal ehelsan

Peng et al. (2019) also provide a rate of convergence to a normal distribution,

) o random forest trained on real data
commonly referred to as Berry-Esseen bounds. Subject to moment condltlons,
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