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Overview
I Random Forests produce highly accurate predictions with li�le tuning but

are poor at producing interpretable conclusions - "Black-boxes"
I Distributional results for random forest predictions have been developed in

works such as (Mentch and Hooker, 2016; Wager and Athey, 2018) and
extended in (Peng et al., 2019)

I Valid inference for variable importance (like the F-test for linear regression)
has been developed too (Coleman et al., 2019)

Random Forest Definitions
I Random forests are ensembles of randomized decision trees trained on data
D, T (·; ξ ,D) which make predictions according to

RF (x;D) = EξT (x; ξ ,D) ≈
1
B

B∑
k=1

T (x; ξk,D) = RFB(x;D)

I Intuition: Bias(RF (x;D)) = Bias(T (x; ξ ,D)) which tends to be small, but
Var(RF (x;D)) = Cor(T (x; ξ ,D), T (x; ξ ′,D))Var(T (x; ξ ,D)) ≤ Var(T (x; ξ ,D)),

so that randomness ξ decreases correlation, which stabilizes predictions
I Averaging of deep decision trees, thus hard to interpret predictions

Random Forest Inference Challenges

I Correlation in random forest average makes analysis challenging
I Typical measures of variable importance are neither statistically valid nor

reliable heuristics (Strobl et al., 2007), but are widely used
I O�en overstate influence of correlated variables and understate influence

of categorical variables
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Distributional Random Forest Results
I Recent work takes advantage of averaging nature of random forest predictions to

establish central limit theorems for random forests build on subsamples of size
k < n. Let Dk−c ∪ Dc be a data frame with the last c rows from Dc, then define

ζc = Cov(T (x; ξ ,Dk−c ∪ Dc), T (x; ξ ,Dk−c ∪ D
′
c))

I Mentch and Hooker (2016) showed that if M1: k = o(
√
n) and M2: ζ1 6→ 0, then

√
B [RFB(x;D) − ERF (x;D)]√

k2
α ζ1 + ζk

d
→ N (0, 1) and α = lim

n→∞

n
B

by illuminating the connection between U-statistics and subsampled learners.
I Wager and Athey (2018) showed that if additional constraints (W1: honesty, W2:

regularity) are placed on tree construction, then if k = o(nβ ) for β ∈ (0.5, 1):
[RF (x;D) − E(Y |X = x)]

σn(x)
d
→ N (0, 1)

and they further provide consistent estimators for σn(x).
I M1, W1 and W2 place many restrictions on tree building, and M2 is impossible to

verify in practice, and additionally don’t inform rates of convergence

Relaxing These Assumptions and Berry-Esseen Bounds

I In Peng et al. (2019), M1 is relaxed and M2 is eliminated (without enforcing W1,
W2), so that so long as P1: k

n
ζ1
kζk
→ 0 and k = o(n), then

√
B [RFB(x;D) − ERF (x;D)]√

k2
n ζ1 +

1
Bζk

d
→ N (0, 1)

I For a bagged p nearest-neighbor estimator, can be shown that ζ1
kζk
≤ c(p) ≤ 2 for

c(p) = limk→∞ 2p/
∑p−1

i=0
∑p−1

j=0

[
(k−1i ) (

k−1
j )

(2k−2i+j )

]

I Peng et al. (2019) also provide a rate of convergence to a normal distribution,
commonly referred to as Berry-Esseen bounds. Subject to moment conditions,

sup
z∈R

��Fn,B,x (z) − Φ(z)�� ≤ C *
,

E|T (x; ξ ,D1 ∪ Dk−1) |
3

n1/2(E|T (x; ξ ,D1 ∪ Dk−1) |2)3/2
+

E|T (x; ξ ,D) − θ |3

B1/2(E|T (x; ξ ,D) − ET (x; ξ ,D) |2)3/2
+

[
k
n

(
ζk
kζ1
− 1

)]1/2
+

(
k
n

)1/3
+
-

where Fn,B,x (z) is the actual cdf of a random forest prediction at x.

Feature Importance Using Distributional Results

I O�en interested in comparing a full model versus a nested model. Then, the
di�erence in RF predictions at given test points T is a U-statistic. Mentch
and Hooker (2016) showed that for D̂B(x) = RFB(x;D) − RFB(x;Dπ ),

H0 : ED̂B(x) = 0 ∀ x ∈ T =⇒ D̂T
B Σ̂
−1
D D̂B

d
→ χ 2

|T |

where Σ̂D is a |T | × |T | covariance matrix.
I The Monte Carlo estimation errors associated with Σ̂D are large enough to

a�ect power/Type I error of procedure, leads to requirements like Bn = O(n)
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Figure: Power for MSE Test procedure from
Coleman et al. (2019). Top: Linear model Second:
Nonlinear regression model Third: High dimensional
correlated signal Bo�om: Data model is exactly a
random forest trained on real data

An E�icient Modification
I Permutation tests allow for

testing feature importance w/o
variance estimation. Let
gy (r ) = (r − y)2. Then, the MSE
(conditional on both x, y) is
given by gy (RF (x)).

I If ∃ sequence an such that

an
[
RFBn(x) − ERF (x)

] d
→N (0, 1)

RFBn(x)
p
→ ERF (x)

then delta method applies and

an
[
gy (RFBn(x)) − Egy (RFBn(x)

]

d
→ N (0, (g′y (ERF (x))

2)

I Can show that permutation
distribution of MSE statistic also
approaches the same
unconditional distribution

Power Simulations
I Procedure that permutes trees between a full and reduced forest a�ains high

power and maintains Type I error rate across a variety of scenarios
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