

Overview

- Random Forests produce highly accurate predictions with little tuning but are poor at producing interpretable conclusions - "Black-boxes"
- Distributional results for random forest predictions have been developed in works such as (Mentch and Hooker, 2016; Wager and Athey, 2018) and extended in (Peng et al., 2019)
- Valid inference for variable importance (like the *F*-test for linear regression) has been developed too (Coleman et al., 2019)

Random Forest Definitions

Random forests are ensembles of randomized decision trees trained on data $\mathcal{D}, T(\cdot; \xi, \mathcal{D})$ which make predictions according to

$$RF(x; \mathcal{D}) = \mathbb{E}_{\xi}T(x; \xi, \mathcal{D}) \approx \frac{1}{B}\sum_{k=1}^{B}T(x; \xi_k, \mathcal{D}) = RF_B(x; \mathcal{D})$$

Intuition: $Bias(RF(x; D)) = Bias(T(x; \xi, D))$ which tends to be small, but $Var(RF(x; \mathcal{D})) = Cor(T(x; \xi, \mathcal{D}), T(x; \xi', \mathcal{D}))Var(T(x; \xi, \mathcal{D})) \le Var(T(x; \xi, \mathcal{D})),$

so that randomness ξ decreases correlation, which stabilizes predictions Averaging of deep decision trees, thus hard to interpret predictions

Random Forest Inference Challenges

- Correlation in random forest average makes analysis challenging
- Typical measures of variable importance are neither statistically valid nor reliable heuristics (Strobl et al., 2007), but are widely used
- Often overstate influence of correlated variables and understate influence of categorical variables

References

- Coleman, T., Peng, W., and Mentch, L. (2019). Scalable and efficient hypothesis testing with random forests. arXiv preprint arXiv:1904.07830 Mentch, L. and G. Hooker (2016). Quantifying uncertainty in random forests via confidence intervals and hypothesis tests. *The Journal of Machine Learning* Research 17(1), 841–881
- Peng, W., Coleman, T., and Mentch, L. (2019). Asymptotic distributions and rates of convergence for random forests and other resampled ensemble learners. arXiv preprint arXiv:1905.10651
- Strobl, C., A.-L. Boulesteix, A. Zeileis, and T. Hothorn (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8(1), 25.

Wager, S. and S. Athey (2018). Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association

Tim Coleman, Lucas Mentch email: tsc35@pitt.edu, website: tim-coleman.github.io, LM email: lkm31@pitt.edu University of Pittsburgh, Department of Statistics

Black-box Inference: Efficient, Scalable, Model-Free Tests for Variable Importance Joint Statistical Meetings 2019

Distributional Random Forest Results

Recent work takes advantage of averaging nature of random forest predictions to establish central limit theorems for random forests build on subsamples of size k < n. Let $\mathcal{D}_{k-c} \cup \mathcal{D}_c$ be a data frame with the last *c* rows from \mathcal{D}_c , then define

$$\zeta_c = \operatorname{Cov}(T(x;\xi,\mathcal{D}_{k-c}\cup\mathcal{D}_c),T(x;\xi,\mathcal{D}_{k-c}\cup\mathcal{D}_c'))$$

Mentch and Hooker (2016) showed that if M1: $k = o(\sqrt{n})$ and M2: $\zeta_1 \neq 0$, then

$$\frac{\sqrt{B}\left[RF_B(x;\mathcal{D}) - \mathbb{E}RF(x;\mathcal{D})\right]}{\sqrt{\frac{k^2}{\alpha}\zeta_1 + \zeta_k}} \xrightarrow{d} \mathcal{N}(0,1) \quad \text{and } \alpha = \lim_{n \to \infty} \frac{n}{B}$$

by illuminating the connection between U-statistics and subsampled learners. Wager and Athey (2018) showed that if additional constraints (W1: honesty, W2: **regularity**) are placed on tree construction, then if $k = o(n^{\beta})$ for $\beta \in (0.5, 1)$:

$$\frac{RF(x;\mathcal{D}) - \mathbb{E}(Y|X=x)]}{\sigma_n(x)} \xrightarrow{d} \mathcal{N}(0,1)$$

and they further provide consistent estimators for $\sigma_n(x)$.

M1, W1 and W2 place many restrictions on tree building, and M2 is impossible to verify in practice, and additionally don't inform rates of convergence

Relaxing These Assumptions and Berry-Esseen Bounds

In Peng et al. (2019), M1 is relaxed and M2 is eliminated (without enforcing W1, **W2**), so that so long as **P1**: $\frac{k}{n}\frac{\zeta_1}{k\zeta_k} \to 0$ and k = o(n), then

$$\frac{\sqrt{B}\left[RF_B(x;\mathcal{D}) - \mathbb{E}RF(x;\mathcal{D})\right]}{\sqrt{\frac{k^2}{n}\zeta_1 + \frac{1}{B}\zeta_k}} \xrightarrow{d} \mathcal{N}(0,1)$$

For a bagged p nearest-neighbor estimator, can be shown that $\frac{\zeta_1}{k\zeta_k} \leq c(p) \leq 2$ for

$$(p) = \lim_{k \to \infty} \frac{2p}{\sum_{i=0}^{p-1} \sum_{j=0}^{p-1} \left[\frac{\binom{k-1}{i} \binom{k-1}{j}}{\binom{2k-2}{i+j}} \right]}$$

Peng et al. (2019) also provide a rate of convergence to a normal distribution, commonly referred to as *Berry-Esseen* bounds. Subject to moment conditions,

$$|B_{k,x}(z) - \Phi(z)| \le C \left(\frac{\mathbb{E}|T(x;\xi,\mathcal{D}_1 \cup \mathcal{D}_{k-1})|^3}{n^{1/2} (\mathbb{E}|T(x;\xi,\mathcal{D}_1 \cup \mathcal{D}_{k-1})|^2)^{3/2}} + \frac{\mathbb{E}|T(x;\xi,\mathcal{D}) - \theta|^3}{B^{1/2} (\mathbb{E}|T(x;\xi,\mathcal{D}) - \mathbb{E}T(x;\xi,\mathcal{D})|^2)^{3/2}} + \left[\frac{k}{n} \left(\frac{\zeta_k}{k\zeta_1} - 1 \right) \right]^{1/2} + \left(\frac{k}{n} \right)^{1/3} \right)$$

where $F_{n,B,x}(z)$ is the actual cdf of a random forest prediction at x.

 $\sup_{z\in\mathbb{R}}|F_{n,}$

Figure: Power for MSE Test procedure from Coleman et al. (2019). **Top:** Linear model **Second:** Nonlinear regression model Third: High dimensional correlated signal **Bottom**: Data model is exactly a random forest trained on real data

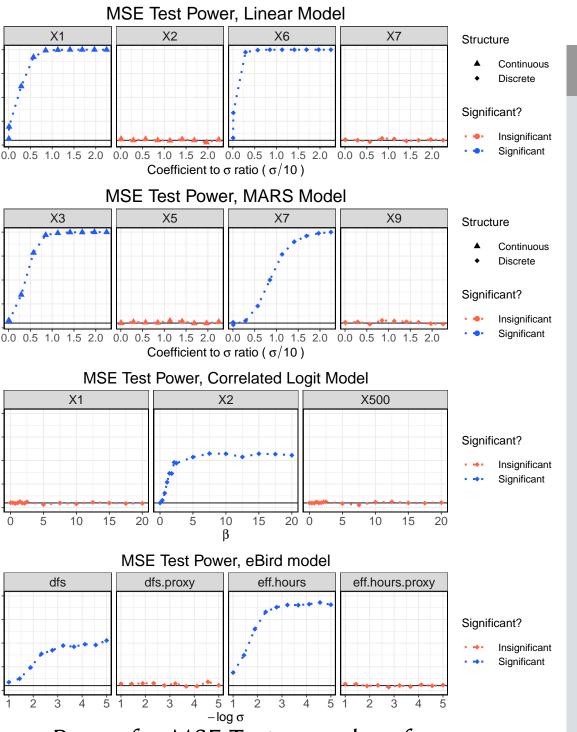
Feature Importance Using Distributional Results

Often interested in comparing a full model versus a nested model. Then, the difference in RF predictions at given test points \mathcal{T} is a U-statistic. Mentch and Hooker (2016) showed that for $\hat{D}_B(x) = RF_B(x; \mathcal{D}) - RF_B(x; \mathcal{D}^{\pi})$,

$$H_0: \mathbb{E}\hat{D}_B(x) = 0 \ \forall \ x \in \mathcal{T} \implies \hat{D}_B^T \hat{\Sigma}_D^{-1} \hat{D}_B \xrightarrow{d} \chi^2_{|\mathcal{T}|}$$

where $\hat{\Sigma}_D$ is a $|\mathcal{T}| \times |\mathcal{T}|$ covariance matrix.

The Monte Carlo estimation errors associated with $\hat{\Sigma}_D$ are large enough to affect power/Type I error of procedure, leads to requirements like $B_n = O(n)$



Power Simulations

o.50

An Efficient Modification

Permutation tests allow for testing feature importance w/o variance estimation. Let $g_{y}(r) = (r - y)^{2}$. Then, the MSE (conditional on both x, y) is given by $g_{\gamma}(RF(x))$.

If \exists sequence a_n such that

$$a_n \left[RF_{B_n}(x) - \mathbb{E}RF(x) \right] \xrightarrow{d} \mathcal{N}(0, 1)$$
$$RF_{B_n}(x) \xrightarrow{p} \mathbb{E}RF(x)$$

then delta method applies and

$$a_n \left[g_y(RF_{B_n}(x)) - \mathbb{E}g_y(RF_{B_n}(x)) \right]$$

$$\stackrel{d}{\to} \mathcal{N}(0, (g'_y(\mathbb{E}RF(x))^2))$$

Can show that permutation distribution of MSE statistic also approaches the same unconditional distribution

Procedure that permutes trees between a full and reduced forest attains high power and maintains Type I error rate across a variety of scenarios